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Abstract

Supersonic flutter analysis of cylindrical composite panels with structural damping treatments has been performed using
the finite element method based on the zig-zag layerwise shell theory. The natural frequencies and loss factors of cylindrical
viscoelastic composites are computed considering the effects of transverse shear deformation. And Kumhaar’s modified
piston theory is applied for the calculation of aerodynamic forces. The flutter of cylindrical composite panels is analyzed
considering structural damping effect. With respect to aeroeclastic stabilities, various damping characteristics of
unconstrained layer, constrained layer, and symmetrically co-cured sandwich laminates are compared with those of an
original base panel.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Surface damping treatments may significantly improve acoustic and dynamic performance of flexible
composite structures. Numerous studies [1,2] have been done on the damping mechanism and efficient
damping treatments. The hybrid composite structures with co-cured, embedded and constrained damping
layers have been applied in aerospace, automotive and electronic products. The embedded damping and
constrained layers dissipate vibratory energy through improved transverse shear deformations. As a result,
more accurate finite element models are required to describe the transverse shear mechanism, general ply
orientation, thick cross-section, various boundary conditions and material degradation.

Among the previous works on the damping mechanics of composite structures, Saravanos and Pereira [3]
developed a finite element based on the discrete layer laminate damping theory to predict the damped dynamic
characteristics of composite plates with embedded damping layers, especially. Koo and Lee [4] developed the
refined finite element model for describing the vibration and damping of anisotropic laminates in cylindrical
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Nomenclature U/, V7' in-plane displacement at the Jth interface
w transverse displacement

I body forces B aerodynamic pressure parameter

h loss factor Y curvature term of Kurmhaar’s piston

M mass matrix theory

q out-of-balance vector u aerodynamic damping parameter

(o elastic modulus 0 density of structures

[ reduced elastic modulus (O = RTQOR) Pu density of airflow

u; displacements o Cauchy stress tensor

u unknown displacement dof vector /5 shape function

bending. Cho et al. [5] investigated the vibration and damping characteristics of laminated plates with fully
and partially covered damping layers by applying the layerwise displacement plate theory. Lee and Kosmatka
[6] suggested layerwise zig-zag theory for analysis of passively damped vibration of composite plates.

The literature survey revealed that a few papers were devoted to the investigation of the damping capacity of
cylindrical composite shells with damping layers unlike flat composite plates. Ramesh and Ganesan [7] studied
the harmonic response of cylindrical shells with constrained damping treatment. Baz and Chen [8] investigated
the control method of axi-symmetric vibrations of cylindrical shells using active constrained layer damping.
Lee et al. [9] investigated the dynamic characteristics of cylindrical composite panels with co-cured and
constrained viscoelastic layers. In this paper, viscoelastic materials are examined according to environmental
temperature and excitation frequencies with refined layerwise finite element mechanics to accurately describe
the transverse shear deformation and sectional warping.

The external skins of high-speed aircrafts are exposed to severe aerodynamic flow and high or low
environmental temperatures. In this case, an aeroelastic self-excited oscillation of the external skin is a critical
problem known as panel flutter. The comprehensive review of the mathematical and physical mechanism of
panel flutter has been performed by Dowell [10]. Supersonic panel flutter is a considerable aeroelastic behavior
in the design of external structures of launch vehicles, supersonic fighters and military missiles. To investigate
the effect of various dampings on the flutter boundary, several authors have treated supersonic flutter of
viscoelastic plates and shells. Johns and Parks [11] reported that hysteretic structural damping destabilized
flutter characteristics. Ellen [12] presented spatial derivative arguments to show that structural damping can
stabilize flutter boundary. Oyibo [13] presented the effect of viscous models for both structural and
aerodynamic damping and proved the dual nature of viscous damping stabilization and destabilization.
Recently Koo and Hwang [14] investigated the dual mechanism of structural damping of composite plates.
They reported that the effect of structural damping is dependent on the fiber orientation of the composite
plates because the flutter mode can be weak or strong according to the fiber orientation.

Unlike flat panels, the research on the aeroelastic behavior of cylindrical structures has been very rare.
Krumbhaar [15] proposed a modified piston supersonic acrodynamic theory, which can be applied to cylindrical
shells with a corrected term of the radius. Librescu wrote an excellent book [16] concerning the supersonic
flutter of shell-type structures. As laminated composite materials were being used more frequently in the
design of external skin of high-speed vehicles, supersonic flutter of composite panels received resurgent interest
in the early 1990s. Bismarck-Nasr [17] investigated the aeroelasticity of laminated fiber reinforced shallow
shells by using finite element method. Pidaparti and Yang [18] carried out supersonic flutter analysis of
laminated composite plates and shells by using a doubly curved quadrilateral thin shell finite element based on
the Kirchhoff-Love thin shell theory. Krause and Dinkler [19] investigated the influence of curvature and
damping on flutter behavior. Bismarck-Nasr and Bones [20] studied damping effects in panel flutter for thin
cylindrical shells, neglecting transverse shear effect.

There has been no published study on supersonic flutter characteristics of cylindrical composite panels with
viscoelastic damping treatments. This paper attempts to investigate panel flutter characteristics of cylindrical
hybrid composite shells with viscoelastic layers. To fully consider the effects of the structural damping, the
transverse shear and the variable in-plane displacements through the thickness are accurately modeled. In this
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study, we applied the discrete layer theory in the formulation of the finite element method, which was
previously verified in our research of composite plates [21,22] and cylindrical panels [9,23]. This finite element
model can give accurate results on the transverse shear deformations and loss factors for various damping
treatments of cylindrical hybrid composite shells with viscoelastic layers.

2. Layerwise finite element formulations
2.1. Description of layerwise displacement fields

Based on the layerwise laminate theory [9,23], the displacement fields (#, v and w) on the x — ¢ — z
coordinate system shown in Fig. 1 can be expressed by introducing the following piecewise continuous
approximations. By introducing the piecewise interpolation function along thickness direction ®”’(z) and finite
element shape functions (&, n), the layerwise description is given as follows (Fig. 2):

NID NID NPE
w =Y Uxg.00'@) =3 UlGcr. g, (E. )’ (2),
J=1 J=1 I=1
NID NID NPE
=Y V06, ¢, 00 () = > Vi, ¢, (&P (),
J=1 J=1 I=1
NPE
Uz = W(X, d)’ [) = Z W](X], (nblv [)lvbl(éa 7])’ (1)
I=1

where U7 and V7 are the in-plane displacements at the Ith node of the Jth interface; NID means the number
of sub-lamina of the plates with degrees of freedom (dof). We applied the concept of sub-lamina of multi-
layered structures with proper thickness discretization to reduce the computational time and the memory
storage needed in the full layerwise mechanics. The NPE means the number of nodes per element. The linear

z-coordinate

x-coordinate.

b

Fig. 1. Geometry of cylindrical composite panels and layerwise in-plane displacement.
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Fig. 2. Layerwise in-plane displacement and interpolation functions between layers of cylindrical panel.

relationships between strain and displacement can be written as follows:

ou Noou’ v ow Juav/ w
== =, gy =——+—= >
ox 4~ dx T 00 g Zg@q’)
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2.2. Constitutive equations of viscoelastic materials

Ni

ZU’

)

Mechanical properties of layered composite and viscoelastic materials are generally defined by the complex
modulus that is dependent on the excitation frequencies and the environmental temperature. Young’s modulus

and shear modulus can be expressed in the following form:

Eiy(,T) = Ey(o, T)Y(1 + iny(w, T)) forl=1,2,3,
612(0)9 T) = Glz(wa T)(l + i’712(wa T))a
E23(0)9 T) = G23(CO, T)(l + i’723(CO, T))a
Gi3(0, T) = Gis(w, T)(1 + iny3(w, T)).

(€)

(4)

In this study, all independent elastic and dissipative properties of the composite and viscoelastic plies are

considered.
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The linear constitutive equations for the kth lamina between sinusoidal stresses and strains with respect to
the material coordinate can be written as

o [0 Q1 O3 0 0 0 €|
02 Opn 0On O 0 0 0 €
03 O3 Oy O3 0 0 0 &3
on( =0 0 0 0u 0 0 e ©
013 0 0 0 0 Oss O 13
onf, [0 0 0 0 0 Q]| (&),
and

011 = —v3v)En /4, Q= ia+vizv)En/4, Q3= (vi3 + vi2va3)Es/4,

053 = (3 +vaviz)Ess/4, Oy = (1 —vizv3)En/4, Q3= (1 —viava)Es3/A4,

Ou=Gn, 0Os5=Gn, Qg =GCn,

A=1=vppva —v23v32 — vi3v31 — 2v21v3vis. (6)

The corresponding constitutive relation for an anisotropic lamina in reference to the initial configuration
X — ¢ — z can be obtained by the coordinate transformation with the fiber angle 0:

(o)i" = [0, TNel™ = [Qr(@, T) + iQp(w, T){e)"". @
2.3. Derivation of governing equations

To derive the governing equation of motion for the cylindrical composite panels with viscoelastic layers,
Hamilton’s variational principle was applied in the following form:

V Vv 4 S

Here, an infinitesimal volume of a cylinder is given as dV = g(z) d¢ dx dz. Over each finite element, the
displacements are expressed as a linear combination of shape functions and nodal values in the following
form:

NPE

W, U, V)= (Wi, UL, VI (&), ©)
=1

Four shape functions through the thickness direction were used, and eight and nine node C° Lagrange
elements were used in this analysis. Let us define the nodal displacement vector for an element i as

w={uw u v W@ v ... gD VNID}T (10)
and
C={W Wy - Wneell,
W ={U U5 - Ulpe}", J=12,... NID,
V=i v - Vi)', J=1,2,...,NID. (11)

By using Hamilton’s variational principle and finite elements, the governing finite element equation of
motion for the cylindrical composite panel can be obtained in the following form:

Meﬁe + (KeR(wa T) + iKeD(wa T))ue = Fe(w) (12)
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The detailed elements of Eq. (12) can be found in our previous work [9]. Through the assembly procedure of
finite elements, global finite element equations of cylindrical hybrid composite shells according to excitation
frequency and temperature can be expressed as

Mii + (K(w, T) + Kp(o, T))u = F(). (13)

The ecigensystem matrices can be written in the following form with proper frequency w, and
temperature 7y,

The natural frequencies and modal loss factors can be determined by using following eigenvalue equations
of the general complex form:

(K(wo, To) + iKp(wo, To) — 2;M)u = 0. (14)

From Eq. (14), the natural frequencies and loss factors for each mode are defined by the real and imaginary
parts of the complex eigenvalue A:

_ Imag[/;]

2 _ *
o = Realll), 1 =iy

(15)
2.4. Aeroelastic finite element formulation
Based on the Krumhaar’s modified supersonic piston theory [15] considering the curvature effect of

cylindrical structures, the aerodynamic stiffness and damping matrices can be derived by using the virtual
work done by the aerodynamic load AP in the following form:

Apo _ PaUs [Ow 1 (MP-Now 1
T M1 \x  Ma \M?—1) 0 2RV -1
ow ow
= —ﬁa—ﬂa-ﬂ)wa (16)

where M is the Mach number, and U, is the freestream speed. 5, u and y are the aerodynamic pressure
parameter, damping parameter and radius coefficient, respectively; w is the transverse deflection of the skin
panel. Here, one can obtain the aerodynamic force vector with respect to finite element nodal displacements as
follows:

F = —pAm— (BAg — yA)u. (17)
Through the assembly procedure, the global aeroelastic finite element equation can be obtained as follows:
Mii + uA, 0+ (K4 iKp + fAg — yA )u = 0. (18)

The full system equations have a skew symmetric aerodynamic matrix that requires very large dof
and computational cost. To reduce computational time and cost, the modal reduction is adopted to
find a linear flutter speed in this study. The modal vectors are obtained by using the following eigenvalue
equation:

(K — o’M)® = 0. (19)

Aerodynamic damping always stabilizes the flutter boundary. Also, to investigate the pure effect
of structural damping on the aeroelastic characteristics of hybrid composite panels, the reduced flutter
equation without the aerodynamic damping term is derived by using the modal approach in the following
form:

(K*(p) — @*M*)U* = 0, (20)
where

M* = @TMO, (21)

K* = O"(K + iKp + fA; — 7A,)0O. (22)
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To non-dimensionalize the analysis results, the non-dimensional parameters are introduced as follows:
3
* a Cc
p=pG «=0fas (23)

Q = Qp(1 + ig).

and

where f* and Q* are the non-dimensional dynamic pressure and complex frequency, respectively; g is a
damping coefficient. @ and / are axial length and thickness of skin panel, respectively; D is rigidity of panel as
defined by D = E,h* for anisotropic material.

3. Results and discussions
3.1. Structural models of cylindrical composite panels with viscoelastic layers

Extensive efforts have been made to suppress the vibration of composite structures by using passive and
constrained layer damping as well as active vibration control. However, there have been only few studies on
the flutter characteristics of cylindrical composite shells considering structure damping in the viscoelastic
layers and composite layers. Therefore, this paper examined the aeroelastic characteristics of cylindrical
composite shells with viscoelastic layers by using the finite element method based on the layerwise shell theory
considering transverse shear deformations.

The cylindrical composite panels with viscoelastic layers shown in Fig. 3 were used for the aeroelastic
analysis. It consists of an original panel, viscoelastic cores, and constrained layers. Four edges of AB, CD, AC
and BD are all clamped. The information of lamination and thickness of cylindrical composite cylindrical
panels is given in Table 1.

C

Q\—\ laminate,h,

VAVVAN

viscoelastic core,h,

— laminate,,h,

. AB : Fixed
0.4rad AC: Fixed

BD : Fixed
a=04m BC : Fixed

Fig. 3. Geometry and construction of cylindrical composite panels with viscoelastic layer.

Table 1
Lamination and thickness of cylindrical composite panels

Laminate, (Gr/Ep) Viscoelastic layer Laminate, (Gr/Ep)
Lamination Thickness (mm)  Isotropic Thickness (mm) Lamination Thickness (mm)
Original panel [04/905]5 1.5 — — — —
UCLD [04/905], 1.5 [0] 0.25 — —
CLD_[90], [04/905], 1.5 [0] 0.25 [90], 0.25
CLD_[0], [04/905], 1.5 [0] 0.25 [0], 0.25
Co-cured [04/905] 0.75 [0] 0.25 [04/905] 0.75

CLD: constrained layer damping; UCLD: unconstrained layer damping; co-cured: embedded damping layer in center layer.
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The composite material of lamina is graphite/epoxy, and material properties are given as follows:

E1 =119 GPa, E2=867 GPa, G12=G13 =5.18 GPa, G23 =39 GPa, V12=0.31,
p = 1570 kg/m3, 7’]] = 0118%, 7’]2 = 0620%, 7’]]2 = }113 = 0812%, 7’]23 == 08460/0
3M-ISD110 and 3M-ISD 112 were used as viscoelastic materials depending on the environmental

temperature and the exciting frequency. The equations proposed by Drake [24] are given in the following
equations:

2log;((MROM /ML)
1 + (FQROM /FR)3-OPE’

log,o(M) = log;,(ML) + (24)

log,o(ETA) = log,,(ETAFROL) + %((SH +SL)4 + (SL — SH)(1 — V1 + 4. (25)

Here, M (stiffness) and ETA (loss factor) are obtained from Egs. (24) and (25), and are used to predict the
material properties of 3M-ISD110 and 3M-ISD112. In this study, environmental temperature and frequency
were assumed to be a constant.

3.2. Free vibration analysis

The 12 x 12 meshes with nine-node elements and four to six sub-laminates through the thickness direction
were used as the layerwise finite element models. The original panel was a all-clamped 14-layered [04/903];
graphite—epoxy composite cylindrical panel of 400 x 400 x 1.75 mm. UCLD consists of the original panel and
the ISD110 (or ISD 112) viscoelastic damping layer of 400 x 400 x 2.5mm located on lower face of the
original panel. CLD is made up of the original panel, the viscoelastic layer, and the constrained layer located
on the lower face of the original panel. [0], and [90], laminates were selected as the constrained layers. The co-
cured sandwich model has an embedded viscoelastic layer in the center of the original panel.

Tables 2—4 show the natural frequencies, loss factors, and mode shapes for the original panel, UCLD, CLD,
and the co-cured sandwich model according to viscoelastic material. When ISD 110 is used as the viscoelastic
layers, the mode shapes of UCLD are similar to those of the original panel. The natural frequencies of UCLD
decrease and the loss factors increase slightly due to the effect of the viscoelastic layer since the viscoelastic
layer has high loss factor, but its modulus is negligibly small in comparison with that of graphite/epoxy layers.
When CLD using [0], plies as the constrained layer, the natural frequencies of longitudinal modes increase and
the loss factors also increase remarkably. With regards to CLD using [90], plies as the constrained layer, the

lamination type
Original
pagnel [(0,/905)]
UCLD m [(0,/90,)/V]

CLD m [(0,/90,)/VIC]
Sandwich m
0,/905)/V/(0,/90
model [(04/905)/V1(0,/905)]

[(04/905),] laminate

Viscoelastic layer

11

Constrained layer

V227 clamp boundary

Fig. 4. Boundary conditions of hybrid panels for various damping treatments.
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natural frequencies of circumferential modes increase and the loss factors increase considerably. When the co-
cure sandwich model is used, the natural frequencies decrease but the loss factors increase dramatically.
The CLD and the co-cure sandwich models are better than the UCLD simply attaching the viscoelastic
layer in view of the damping capacity. The co-cure sandwich model shows the highest damping capacity. This
result shows that the case with viscoelastic layer attachment compared to the original panel with no
viscoelastic layer attachment, the case using the constrained layers rather than the case with simply the
viscoelastic layer attachment, and the condition of fastened constrained layers than that of loose constrained
layer showed better damping efficiency. The co-cure sandwich model has a good damping efficiency, but it
decreases the natural frequencies. So, it may be the good choice to select CLD considering the natural
frequencies and damping efficiency. When ISD 112 is used as viscoelastic layers, ¢ free vibration analysis tends
to be similar that when ISD 110 is used (Fig. 4).

—0— M12

e 15
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T
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T
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B

Fig. 5. Flutter history of cylindrical composite panel neglecting structural damping.
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Fig. 6. Flutter history of cylindrical composite panel considering structural damping.
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3.3. Aeroelastic effect of structural damping for cylindrical composite panel

Generally, structural damping is often neglected in flutter analysis. In previous studies [11-14] considering
structural damping of a composite panel, total structural damping was simply assumed as g. However,
structural damping has a significant effect on the dynamic and aeroelastic characteristics of vehicles or
structures. So, in this study, structural damping was considered a type of loss factor, #, and was applied to not
only the viscoelastic layer but also to each layer consisting of cylindrical composite panels. And then, the panel
flutter analysis was performed by solving complex eigenvalue problems. Thirty normal modes were used in
flutter analysis. The previous model used in free vibration analysis was also used in the panel flutter analysis.
To calculate the aerodynamic force, Krumhaar’s modified supersonic piston theory is applied.

The aeroelastic results of the original base composite panel neglecting structural damping are compared
with those considering structural damping. Structural damping means the loss factor of graphite/epoxy layer
consisting of the cylindrical composite panel. Panel flutter occurs at a point where the damping coefficients are
lower than zero. As shown in Figs. 5 and 6, the two cases are very different.

When structural damping is neglected, the panel flutter occurs at dynamic pressure * = 841, when the two
modes merge between fourth and fifth mode. The panel flutter also occurs between the fourth and fifth modes
when structural damping is considered, but the flutter boundary changes remarkably. The flutter boundary
(B*) considering structural damping is reduced by 210, compared with that of the other.

The eigensolution of Eq. (18) has been represented as a complex form (4 = Ag + A7) without a structural
damping. The complex eigensolution A have been obtained with real values (1; = 0) before a panel flutter
occurs. Until the flutter point, real parts 4z of eigenvalues of two flutter modes have got close to each other as
aerodynamic pressure increases. At the flutter point, the frequency coalescence of two modes has happened
and the eigensolution has been the conjugate complex.

With a structural damping (Kp#0), the eigensolution A have been complex values according to all
aerodynamic pressure. Until the flutter point, real parts 1z of two flutter modes also have got close to each
other but do not merged as aerodynamic pressure increases. These eigensolutions with a damping gradually
approach to the ones without a structural damping, which are asymptotic lines. The flutter with a structural
damping occurs when the sign of the imaginary part A; changes to the negative value. The spread point, where
the gap of the imaginary values between conjugate complex eigenvalue gets wide after mode coalescence, has
located prior to the one without a structural damping. And the sign of imaginary parts changes the negative
value before the flutter limit without a structural damping. Then the critical acrodynamic pressure of the
aeroelastic systems considering the structural damping may be located prior to the one without a structural
damping. Hence, it causes a decrease of the flutter boundary.

—m—M12(1st) —@—M14 —A—M22 ¥ MI5 —-M33
—o—M13 —O—M23 ~A-M24  7--M25 < M34(10th)

700 5= I — o & 0 O 0.08 1
650 - \4 * * o0 L S 4
0.06
600 .
= B A v v . X ’ Z ' ) 0.04 -
§ A .. . - 4 =
< 550 k5
z £ 0.02 -
% 500 k5
2 8 . .
S d i ¥
S 450 1 ) 0.00
s g
® 400 - % -0.02 A Flutter mode
w =4.4434x10°, B'=41
350 a —&—1st mode P 34x10° B
-0.04
——2nd mode
300 —@—3rd mode
-0.06 15 4th mode
250
—w—5th mode
T T T T T '008 T T T T T
0 100 200 300 400 500 600 0 100 200 300 400 500 600
(@) B (b B

Fig. 7. Flutter history of UCLD with ISD 110 viscoelastic layer.



The results of this analysis are remarkable. It was thought that structural damping significantly affects
aeroelastic characteristics. The loss factor of graphite/epoxy is often neglected in dynamic and aeroelastic
analysis because it is very small (x~107%) compared to other material properties. In free vibration analysis

Table 2
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Effect of damping treatments using ISD 110 as viscoelastic material on the flutter of cylindrical panel (I)

Original Panel UCLD ( (0190 /d CLD_[O]2
Modes (10490,],) (100./4D (10,4900, )
Freq (Hz) n Freq (Hz) n Freq (Hz) n
aﬂ-\\’:‘Q‘ ““":\"Q‘ 7 N
P “\\\\\‘\t:;, “\\\\\\\t:;, AR,
7/ ASSSo NSSS ) RESS
s N i N I 7N
N T TS LTS
15 “32‘:2\3\\\\\“‘\\‘},"3%2:%" S Sl \\“““‘2}3’%?"
N = Z= AN 7
3%:‘3‘“\‘!!!%“’ W “é‘gl‘\‘\‘\.‘- =
“;“:"’ ‘:‘ =
250.100 | 0.005736 261.044 | 0.030975
NN AN
TR ST,
N O LTRSS
5 et
= \:‘&!\}\!"‘"‘ggﬁz:O’
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460.877 0.004168 441.840 0.004399 465.605 0.057794
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considering the loss factor of graphite/epoxy, the loss factor of graphite/epoxy may be neglected because the
difference between results with structural damping and results without structural damping is very small. But
aeroelastic results show that structural damping significantly affects acroelastic analysis although very slightly.
Hence, it is very important to consider structural damping to accurately estimate the flutter boundary to
achieve conservative aeroelastic design.

3.4. Flutter boundary of hybrid panels with damping treatments

Four cases are considered as damping treatments. The flutter characteristics of original base composite
panel are compared with those of CLD (constrained layers damping treatment), UCLD (unconstrained layers
damping treatment) and composite panel with embedded damping layer.

Firstly, in the case where ISD 110 is used as viscoelastic materials, as shown in Fig. 7 and Table 2, the flutter
of UCLD model exists between the fourth and fifth modes. And the critical aerodynamic pressure * decreases
by 201, compared with that of original base composite panel. As mentioned in the free vibration analysis, the
density of a viscoelastic material is about twice that of a graphite/epoxy material, but the modulus of a
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Table 3
Effect of damping treatments using ISD 110 as viscoelastic material on the flutter of cylindrical panel (IT)
CLD_[90], Sandwich model
Modes (1(0,/90,)/d/90,1) Modes (10,/90,/d/0,/90,1)
Freq (Hz) n Freq (Hz) n
1 lth 19th
Vo4 “ 5 N NS
. . S
O SO
902.395 | 0.077656 849.824 0.0066873
9
<<TORPN
N "" <7/ T
Ak Syl
. 0 : L
13 Uk / 21 "“",/““
L (S
N
938.248 | 0.078394 874.894 | 0.078057
A2
14t 22nd
953.633 0.149155 910.799
1 Sth 23rd
1027.917 0.044842 910.736 0.434698
Flutter 13th B* =886 Flutter 215 B*=656

111

viscoelastic layer is much smaller than that of a graphite/epoxy layer. So, the natural frequencies of UCLD are
less than those of the original base panel, and this affects the flutter boundary. Finally, the low frequency
reduces the aeroelastic stability in view of non-dimensional aerodynamic pressures.
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Figs. 8 and 9 and Tables 2 and 3 indicate the flutter boundaries in the cases of CLD_[0], and CLD_[90]5.
When CLD_[0], is used, flutter also occurs at the fourth mode. The constrained layers, [0], plies, improve the
longitudinal stiffness and increase the natural frequencies, but the panel flutter of the original model depends
on the circumferential (¢-directional) mode mainly. So, [0], layers provides the better acroelastic stability than
UCLD, but it does not improve the flutter boundary. The flutter boundary of CLD_[0], decreases by 120, in
compared with the flutter limit of original base composite panel. In free vibration analysis, CLD_[0], shows
the higher natural frequencies and the better loss factors than those of base panel. But CLD_[0], has the lower
flutter boundary than the original panel.

In the case of CLD _[90],, the aeroelastic unstable phenomenon is observed in higher mode than those in the
cases of UCLD and CLD [0],. The panel flutter occurs at the 13th mode. [90], layers improve the
circumferential stiffness, and it causes the improvement of the aeroelastic stability. The flutter boundary of
CLD_[90], increases by 275, compared with that of original base composite panel. CLD_[90], shows improved
results in free vibration as well as aeroelastic analysis.

As shown in Fig. 10 and Table 3, in the case of the model with an embedded damping layer, the panel flutter
is observed in the higher mode than the instance of CLD_[90], (comparison is not clear). It occurs at the 21st
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mode and the flutter boundary (f*) increases by 45, compared with that of original base composite panel. The
composite panel with embedded damping layer has the better aeroelastic stability and the better loss factor,
but lower natural frequencies than the original base panel.

Secondly, in the case of using ISD 112 as viscoelastic materials, as shown in Fig. 11, the flutter of UCLD
model has been observed between fourth and fifth modes. And the dynamic pressure f* decreases by 201,
compared with that of original base composite panel, resulting in the same value to the case using ISD 110.
This result means that the viscoelastic layer does not affect to the aeroelastic stability for free boundary layer
models.

Figs. 12 and 13 and Table 4 indicate the flutter boundaries for the cases of CLD _[0], and CLD [90],. In
instance of CLD_[0],, the flutter also occurs between fourth and fifth modes. Similarly to the case using ISD
112, [0], plies give better aeroelastic stability than UCLD, but it does not improve the flutter boundary in the
view of non-dimensional flutter limit. The flutter boundary of CLD [0], decreases by 209, when compared
with that of the original base composite panel. It has the lower flutter boundary than CLD_[0], and UCLD
using ISD 110.
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Table 4
Effect of damping treatments using ISD 112 as viscoelastic material on the flutter of cylindrical panel

CLD _[0], CLD_[90], Sandwich model
Modes
odes Freq (Hz) n Freq (Hz) n Freq (Hz) n
AR AT Y NN
A RSN A RO A 93055
SN B N 2N
LTINS 22 LTI TR
15 "%}Q}}\‘\\\“‘:"{%?’:" "’3:‘3}}\‘\\\“\“’0!,’2%. Ny S
N N NS
o =
253.534 | 0.074186 182.373 | 0.128329
AT
’:;;-;’I" i\ LIRS
e ez
‘§3$§\‘\!% ~
N
204.735 0.095230
“\i\\
\\\\’%“
=
4th
s NS
‘:::::0
435.041 0.048502 438.816 0.056723 291.753 0.126043
Flutter 4th B* =402 5th B* =440 4th B*=227

As regards to CLD_[90],, the aeroelastic unstable phenomenon is observed at the fifth mode as differing
from the instance of CLD [90], using ISD 110. The flutter boundary of CLD _[90], decreases by 191,
compared with that of the original base composite panel. CLD_[90], shows improved results in free vibration
but poor results in aeroelastic analysis when ISD 112 is selected as the viscoelastic layer.

As shown in Fig. 14 and Table 3, in regard to the model with embedded damping layer, the panel flutter
occurs at the fourth mode unlike the case using ISD 110, and the flutter boundary (f*) decreases by 384,
compared with that of original base composite panel. The co-cured sandwich model has the worst aeroelastic
stability. In free vibration analysis, the selection of viscoelastic material does not significantly affect the
natural frequencies and the loss factor. But, in the panel flutter analysis, it affects the aeroelastic stability
significantly.

These results show that aeroelastic characteristics as well as dynamic characteristics may improve with the
proper damping treatment, but the flutter boundary can change dramatically with the selection of viscoelastic
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Fig. 14. Flutter history of panel with embedded ISD 112 viscoelastic layer.

material and damping treatments. The optimal design of viscoelastic damping treatment will be a pending
problem in view of the improvement of the aeroelastic performance.

4. Conclusion

In this study, the panel flutter of cylindrical hybrid composite panels with viscoelastic layers was
investigated by using the finite element method based on the layerwise shell theory considering transverse
shear deformations and Kumhaar’s modified piston theory. Various damping treatment models such as
UCLD, CLD and co-cured models were compared with the original base panel with respect to aeroelastic
stability.

Present results show that it is very important to consider the structural damping properties for the accurate
estimation of aeroelastic characteristics of cylindrical hybrid composite panels even if the structural damping
is very small. In the case where the structural damping was neglected, the results differed by 25% compared
with those in case where structural damping was considered. The various damping treatments improved the
dynamic stability in previous study, but some cases with surface damping treatments lowered the aeroelastic
stability. Therefore, it is necessary to optimally design the damping treatment to improve both dynamic and
aeroelastic characteristics of cylindrical hybrid composite panels with viscoelastic layers.
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