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Abstract

Supersonic flutter analysis of cylindrical composite panels with structural damping treatments has been performed using

the finite element method based on the zig-zag layerwise shell theory. The natural frequencies and loss factors of cylindrical

viscoelastic composites are computed considering the effects of transverse shear deformation. And Kumhaar’s modified

piston theory is applied for the calculation of aerodynamic forces. The flutter of cylindrical composite panels is analyzed

considering structural damping effect. With respect to aeroelastic stabilities, various damping characteristics of

unconstrained layer, constrained layer, and symmetrically co-cured sandwich laminates are compared with those of an

original base panel.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Surface damping treatments may significantly improve acoustic and dynamic performance of flexible
composite structures. Numerous studies [1,2] have been done on the damping mechanism and efficient
damping treatments. The hybrid composite structures with co-cured, embedded and constrained damping
layers have been applied in aerospace, automotive and electronic products. The embedded damping and
constrained layers dissipate vibratory energy through improved transverse shear deformations. As a result,
more accurate finite element models are required to describe the transverse shear mechanism, general ply
orientation, thick cross-section, various boundary conditions and material degradation.

Among the previous works on the damping mechanics of composite structures, Saravanos and Pereira [3]
developed a finite element based on the discrete layer laminate damping theory to predict the damped dynamic
characteristics of composite plates with embedded damping layers, especially. Koo and Lee [4] developed the
refined finite element model for describing the vibration and damping of anisotropic laminates in cylindrical
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

fi body forces
h loss factor
M mass matrix
q out-of-balance vector
Qij elastic modulus
Qij reduced elastic modulus ðQ ¼ RTQRÞ

ui displacements
u unknown displacement dof vector

UJ, VJ in-plane displacement at the Jth interface
W transverse displacement
b aerodynamic pressure parameter
g curvature term of Kurmhaar’s piston

theory
m aerodynamic damping parameter
r density of structures
ra density of airflow
sij Cauchy stress tensor
ck shape function
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bending. Cho et al. [5] investigated the vibration and damping characteristics of laminated plates with fully
and partially covered damping layers by applying the layerwise displacement plate theory. Lee and Kosmatka
[6] suggested layerwise zig-zag theory for analysis of passively damped vibration of composite plates.

The literature survey revealed that a few papers were devoted to the investigation of the damping capacity of
cylindrical composite shells with damping layers unlike flat composite plates. Ramesh and Ganesan [7] studied
the harmonic response of cylindrical shells with constrained damping treatment. Baz and Chen [8] investigated
the control method of axi-symmetric vibrations of cylindrical shells using active constrained layer damping.
Lee et al. [9] investigated the dynamic characteristics of cylindrical composite panels with co-cured and
constrained viscoelastic layers. In this paper, viscoelastic materials are examined according to environmental
temperature and excitation frequencies with refined layerwise finite element mechanics to accurately describe
the transverse shear deformation and sectional warping.

The external skins of high-speed aircrafts are exposed to severe aerodynamic flow and high or low
environmental temperatures. In this case, an aeroelastic self-excited oscillation of the external skin is a critical
problem known as panel flutter. The comprehensive review of the mathematical and physical mechanism of
panel flutter has been performed by Dowell [10]. Supersonic panel flutter is a considerable aeroelastic behavior
in the design of external structures of launch vehicles, supersonic fighters and military missiles. To investigate
the effect of various dampings on the flutter boundary, several authors have treated supersonic flutter of
viscoelastic plates and shells. Johns and Parks [11] reported that hysteretic structural damping destabilized
flutter characteristics. Ellen [12] presented spatial derivative arguments to show that structural damping can
stabilize flutter boundary. Oyibo [13] presented the effect of viscous models for both structural and
aerodynamic damping and proved the dual nature of viscous damping stabilization and destabilization.
Recently Koo and Hwang [14] investigated the dual mechanism of structural damping of composite plates.
They reported that the effect of structural damping is dependent on the fiber orientation of the composite
plates because the flutter mode can be weak or strong according to the fiber orientation.

Unlike flat panels, the research on the aeroelastic behavior of cylindrical structures has been very rare.
Krumhaar [15] proposed a modified piston supersonic aerodynamic theory, which can be applied to cylindrical
shells with a corrected term of the radius. Librescu wrote an excellent book [16] concerning the supersonic
flutter of shell-type structures. As laminated composite materials were being used more frequently in the
design of external skin of high-speed vehicles, supersonic flutter of composite panels received resurgent interest
in the early 1990s. Bismarck-Nasr [17] investigated the aeroelasticity of laminated fiber reinforced shallow
shells by using finite element method. Pidaparti and Yang [18] carried out supersonic flutter analysis of
laminated composite plates and shells by using a doubly curved quadrilateral thin shell finite element based on
the Kirchhoff–Love thin shell theory. Krause and Dinkler [19] investigated the influence of curvature and
damping on flutter behavior. Bismarck-Nasr and Bones [20] studied damping effects in panel flutter for thin
cylindrical shells, neglecting transverse shear effect.

There has been no published study on supersonic flutter characteristics of cylindrical composite panels with
viscoelastic damping treatments. This paper attempts to investigate panel flutter characteristics of cylindrical
hybrid composite shells with viscoelastic layers. To fully consider the effects of the structural damping, the
transverse shear and the variable in-plane displacements through the thickness are accurately modeled. In this
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study, we applied the discrete layer theory in the formulation of the finite element method, which was
previously verified in our research of composite plates [21,22] and cylindrical panels [9,23]. This finite element
model can give accurate results on the transverse shear deformations and loss factors for various damping
treatments of cylindrical hybrid composite shells with viscoelastic layers.
2. Layerwise finite element formulations

2.1. Description of layerwise displacement fields

Based on the layerwise laminate theory [9,23], the displacement fields (u, v and w) on the x� f� z

coordinate system shown in Fig. 1 can be expressed by introducing the following piecewise continuous
approximations. By introducing the piecewise interpolation function along thickness direction FJðzÞ and finite
element shape functions cI ðx; ZÞ, the layerwise description is given as follows (Fig. 2):

u1 ¼
XNID

J¼1

UJ ðx;f; tÞFJðzÞ ¼
XNID

J¼1

XNPE

I¼1

UJ
I ðxI ;fI ; tÞcI ðx; ZÞF

JðzÞ,

u2 ¼
XNID

J¼1

VJðx;f; tÞFJðzÞ ¼
XNID

J¼1

XNPE

I¼1

V J
I ðxI ;fI ; tÞcI ðx; ZÞF

JðzÞ,

u3 ¼W ðx;f; tÞ ¼
XNPE

I¼1

W I ðxI ;fI ; tÞcI ðx; ZÞ, ð1Þ

where UJ
I and V J

I are the in-plane displacements at the Ith node of the Jth interface; NID means the number
of sub-lamina of the plates with degrees of freedom (dof). We applied the concept of sub-lamina of multi-
layered structures with proper thickness discretization to reduce the computational time and the memory
storage needed in the full layerwise mechanics. The NPE means the number of nodes per element. The linear
x-coordinate.

z-coordinate
R

a

g

A

B

C

D

h

�

�

Fig. 1. Geometry of cylindrical composite panels and layerwise in-plane displacement.
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Fig. 2. Layerwise in-plane displacement and interpolation functions between layers of cylindrical panel.
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relationships between strain and displacement can be written as follows:

exx ¼
qu

qx
¼
XNi

J¼1

qUJ

qx
FJ ; eff ¼

qv

gqf
þ

w

g
¼
XNi

J¼1

qV J

gqf
FJ þ

W

g
,

gxf ¼
qu

gqf
þ

qv

qx
¼
XNi

J¼1

qUJ

gqf
þ

qVJ

qx

� �
FJ ; gxz ¼

qw

qx
þ

qu

qx
¼

qW

qx
þ
XNi

J¼1

UJ dF
J

dz
,

gfz ¼
qw

gqf
þ

qv

qz
�

v

g
¼

qW

gqf
þ
XNi

J¼1

V J dF
J

dz
�
XNi

J¼1

VJ

g

� �
FJ . ð2Þ

2.2. Constitutive equations of viscoelastic materials

Mechanical properties of layered composite and viscoelastic materials are generally defined by the complex
modulus that is dependent on the excitation frequencies and the environmental temperature. Young’s modulus
and shear modulus can be expressed in the following form:

EII ðo;TÞ ¼ EII ðo;TÞð1þ iZII ðo;TÞÞ for I ¼ 1; 2; 3, (3)

G12ðo;TÞ ¼ G12ðo;TÞð1þ iZ12ðo;TÞÞ,

G23ðo;TÞ ¼ G23ðo;TÞð1þ iZ23ðo;TÞÞ,

G13ðo;TÞ ¼ G13ðo;TÞð1þ iZ13ðo;TÞÞ. ð4Þ

In this study, all independent elastic and dissipative properties of the composite and viscoelastic plies are
considered.
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The linear constitutive equations for the kth lamina between sinusoidal stresses and strains with respect to
the material coordinate can be written as

s1
s2
s3
s23
s13
s12

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

k

¼

Q11 Q12 Q13 0 0 0

Q12 Q22 Q23 0 0 0

Q13 Q23 Q33 0 0 0

0 0 0 Q44 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q66

2
6666666664

3
7777777775

k

e1
e2
e3
e23
e13
e12

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

k

(5)

and

Q11 ¼ ð1� n23n32ÞE11=D; Q12 ¼ ðn12 þ n13n32ÞE22=D; Q13 ¼ ðn13 þ n12n23ÞE33=D,

Q23 ¼ ðn23 þ n21n13ÞE33=D; Q22 ¼ ð1� n13n31ÞE22=D; Q33 ¼ ð1� n12n21ÞE33=D,

Q44 ¼ G23; Q55 ¼ G13; Q66 ¼ G12,

D ¼ 1� n12n21 � n23n32 � n13n31 � 2n21n32n13. ð6Þ

The corresponding constitutive relation for an anisotropic lamina in reference to the initial configuration
x� f� z can be obtained by the coordinate transformation with the fiber angle y:

fsgxfz
k ¼ ½Qðo;TÞ�fegxfz

k ¼ ½QRðo;TÞ þ iQDðo;TÞ�feg
xfz
k . (7)

2.3. Derivation of governing equations

To derive the governing equation of motion for the cylindrical composite panels with viscoelastic layers,
Hamilton’s variational principle was applied in the following form:Z

V

r €uidui dV þ

Z
V

sijdeij dV ¼

Z
V

f idui dV þ

Z
S

tidui dS. (8)

Here, an infinitesimal volume of a cylinder is given as dV ¼ gðzÞ df dx dz. Over each finite element, the
displacements are expressed as a linear combination of shape functions and nodal values in the following
form:

ðW ;UJ ;V JÞ ¼
XNPE

I¼1

ðW I ;U
J
I ;V

J
I ÞcI ðx; ZÞ. (9)

Four shape functions through the thickness direction were used, and eight and nine node C0 Lagrange
elements were used in this analysis. Let us define the nodal displacement vector for an element i as

ue ¼ f u
0 u1 v1 u2 v2 � � � uNID vNID gT (10)

and

u0 ¼ fW 1 W 2 � � � WNPE g
T,

uJ ¼ fU
J
1 UJ

2 � � � UJ
NPE g

T; J ¼ 1; 2; . . . ;NID,

vJ ¼ fV
J
1 VJ

2 � � � V J
NPE g

T; J ¼ 1; 2; . . . ;NID. ð11Þ

By using Hamilton’s variational principle and finite elements, the governing finite element equation of
motion for the cylindrical composite panel can be obtained in the following form:

Me €ue þ ðKeRðo;TÞ þ iKeDðo;TÞÞue ¼ FeðoÞ. (12)
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The detailed elements of Eq. (12) can be found in our previous work [9]. Through the assembly procedure of
finite elements, global finite element equations of cylindrical hybrid composite shells according to excitation
frequency and temperature can be expressed as

M€uþ ðKðo;TÞ þ iKDðo;TÞÞu ¼ FðoÞ. (13)

The eigensystem matrices can be written in the following form with proper frequency o0 and
temperature T0.

The natural frequencies and modal loss factors can be determined by using following eigenvalue equations
of the general complex form:

ðKðo0;T0Þ þ iKDðo0;T0Þ � l�nMÞu ¼ 0. (14)

From Eq. (14), the natural frequencies and loss factors for each mode are defined by the real and imaginary
parts of the complex eigenvalue l�n:

o2
n ¼ Real½l�n�; Zn ¼

Imag½l�n�
Real½l�n�

. (15)

2.4. Aeroelastic finite element formulation

Based on the Krumhaar’s modified supersonic piston theory [15] considering the curvature effect of
cylindrical structures, the aerodynamic stiffness and damping matrices can be derived by using the virtual
work done by the aerodynamic load DP in the following form:

DP ¼ �
raU2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1
p

qw

qx
þ

1

Ma1

M2 � 2

M2 � 1

� �
qw

qt
�

1

2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1
p w

� �

¼ � b
qw

qx
� m

qw

qt
þ gw, ð16Þ

where M is the Mach number, and UN is the freestream speed. b, m and g are the aerodynamic pressure
parameter, damping parameter and radius coefficient, respectively; w is the transverse deflection of the skin
panel. Here, one can obtain the aerodynamic force vector with respect to finite element nodal displacements as
follows:

F ¼ �mAm _u� ðbAb � gAgÞu. (17)

Through the assembly procedure, the global aeroelastic finite element equation can be obtained as follows:

M€uþ mAm _uþ ðKþ iKD þ bAb � gAgÞu ¼ 0. (18)

The full system equations have a skew symmetric aerodynamic matrix that requires very large dof
and computational cost. To reduce computational time and cost, the modal reduction is adopted to
find a linear flutter speed in this study. The modal vectors are obtained by using the following eigenvalue
equation:

ðK� o2MÞH ¼ 0. (19)

Aerodynamic damping always stabilizes the flutter boundary. Also, to investigate the pure effect
of structural damping on the aeroelastic characteristics of hybrid composite panels, the reduced flutter
equation without the aerodynamic damping term is derived by using the modal approach in the following
form:

ðK�ðbÞ � O2M�ÞU� ¼ 0, (20)

where

M� ¼ HTMH, (21)

K� ¼ HT
ðKþ iKD þ bAb � gAgÞH. (22)
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To non-dimensionalize the analysis results, the non-dimensional parameters are introduced as follows:

b� ¼ b
a3

D
; O�i ¼ Oi

ffiffiffiffiffiffiffiffiffiffi
a4

rc

D

r
(23)

and

O ¼ ORð1þ igÞ.

where b� and O� are the non-dimensional dynamic pressure and complex frequency, respectively; g is a
damping coefficient. a and h are axial length and thickness of skin panel, respectively; D is rigidity of panel as
defined by D ¼ E2h3 for anisotropic material.
3. Results and discussions

3.1. Structural models of cylindrical composite panels with viscoelastic layers

Extensive efforts have been made to suppress the vibration of composite structures by using passive and
constrained layer damping as well as active vibration control. However, there have been only few studies on
the flutter characteristics of cylindrical composite shells considering structure damping in the viscoelastic
layers and composite layers. Therefore, this paper examined the aeroelastic characteristics of cylindrical
composite shells with viscoelastic layers by using the finite element method based on the layerwise shell theory
considering transverse shear deformations.

The cylindrical composite panels with viscoelastic layers shown in Fig. 3 were used for the aeroelastic
analysis. It consists of an original panel, viscoelastic cores, and constrained layers. Four edges of AB, CD, AC
and BD are all clamped. The information of lamination and thickness of cylindrical composite cylindrical
panels is given in Table 1.
φ = 0.4 rad

laminate1,h1

a = 0.4 m

b = Rφ
  = 0.4 m

viscoelastic core,hc

laminate2,h2

A

B

C

D

AB : Fixed
AC : Fixed
BD : Fixed
BC : Fixed

Fig. 3. Geometry and construction of cylindrical composite panels with viscoelastic layer.

Table 1

Lamination and thickness of cylindrical composite panels

Laminate1 (Gr/Ep) Viscoelastic layer Laminate2 (Gr/Ep)

Lamination Thickness (mm) Isotropic Thickness (mm) Lamination Thickness (mm)

Original panel [04/903]s 1.5 — — — —

UCLD [04/903]s 1.5 [0] 0.25 — —

CLD_[90]2 [04/903]s 1.5 [0] 0.25 [90]2 0.25

CLD_[0]2 [04/903]s 1.5 [0] 0.25 [0]2 0.25

Co-cured [04/903] 0.75 [0] 0.25 [04/903] 0.75

CLD: constrained layer damping; UCLD: unconstrained layer damping; co-cured: embedded damping layer in center layer.
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The composite material of lamina is graphite/epoxy, and material properties are given as follows:

E1 ¼ 119 GPa; E2 ¼ 8:67 GPa; G12 ¼ G13 ¼ 5:18 GPa; G23 ¼ 3:9 GPa; n12 ¼ 0:31,

r ¼ 1570 kg=m3; Z1 ¼ 0:118%; Z2 ¼ 0:620%; Z12 ¼ Z13 ¼ 0:812%; Z23 ¼ 0:846%.

3M-ISD110 and 3M-ISD 112 were used as viscoelastic materials depending on the environmental
temperature and the exciting frequency. The equations proposed by Drake [24] are given in the following
equations:

log10ðMÞ ¼ log10ðMLÞ þ
2log10ðMROM=MLÞ

1þ ðFQROM=FRÞSLOPE
, (24)

log10ðETAÞ ¼ log10ðETAFROLÞ þ
C

2
ððSHþ SLÞAþ ðSL� SHÞð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
Þ. (25)

Here, M (stiffness) and ETA (loss factor) are obtained from Eqs. (24) and (25), and are used to predict the
material properties of 3M-ISD110 and 3M-ISD112. In this study, environmental temperature and frequency
were assumed to be a constant.
3.2. Free vibration analysis

The 12� 12 meshes with nine-node elements and four to six sub-laminates through the thickness direction
were used as the layerwise finite element models. The original panel was a all-clamped 14-layered [04/903]s
graphite–epoxy composite cylindrical panel of 400� 400� 1.75mm. UCLD consists of the original panel and
the ISD110 (or ISD 112) viscoelastic damping layer of 400� 400� 2.5mm located on lower face of the
original panel. CLD is made up of the original panel, the viscoelastic layer, and the constrained layer located
on the lower face of the original panel. [0]2 and [90]2 laminates were selected as the constrained layers. The co-
cured sandwich model has an embedded viscoelastic layer in the center of the original panel.

Tables 2–4 show the natural frequencies, loss factors, and mode shapes for the original panel, UCLD, CLD,
and the co-cured sandwich model according to viscoelastic material. When ISD 110 is used as the viscoelastic
layers, the mode shapes of UCLD are similar to those of the original panel. The natural frequencies of UCLD
decrease and the loss factors increase slightly due to the effect of the viscoelastic layer since the viscoelastic
layer has high loss factor, but its modulus is negligibly small in comparison with that of graphite/epoxy layers.
When CLD using [0]2 plies as the constrained layer, the natural frequencies of longitudinal modes increase and
the loss factors also increase remarkably. With regards to CLD using [90]2 plies as the constrained layer, the
UCLD

CLD

Sandwich
model

Original
panel [(04/903)s]

[(04/903)s/V]

[(04/903)s/V/C]

[(04/903)/V/(04/903)]

lamination type

Viscoelastic layer

[(04/903)s] laminate

Constrained layer

clamp boundary

Fig. 4. Boundary conditions of hybrid panels for various damping treatments.
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natural frequencies of circumferential modes increase and the loss factors increase considerably. When the co-
cure sandwich model is used, the natural frequencies decrease but the loss factors increase dramatically.

The CLD and the co-cure sandwich models are better than the UCLD simply attaching the viscoelastic
layer in view of the damping capacity. The co-cure sandwich model shows the highest damping capacity. This
result shows that the case with viscoelastic layer attachment compared to the original panel with no
viscoelastic layer attachment, the case using the constrained layers rather than the case with simply the
viscoelastic layer attachment, and the condition of fastened constrained layers than that of loose constrained
layer showed better damping efficiency. The co-cure sandwich model has a good damping efficiency, but it
decreases the natural frequencies. So, it may be the good choice to select CLD considering the natural
frequencies and damping efficiency. When ISD 112 is used as viscoelastic layers, t free vibration analysis tends
to be similar that when ISD 110 is used (Fig. 4).
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Fig. 6. Flutter history of cylindrical composite panel considering structural damping.

Fig. 5. Flutter history of cylindrical composite panel neglecting structural damping.
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3.3. Aeroelastic effect of structural damping for cylindrical composite panel

Generally, structural damping is often neglected in flutter analysis. In previous studies [11–14] considering
structural damping of a composite panel, total structural damping was simply assumed as g. However,
structural damping has a significant effect on the dynamic and aeroelastic characteristics of vehicles or
structures. So, in this study, structural damping was considered a type of loss factor, Z, and was applied to not
only the viscoelastic layer but also to each layer consisting of cylindrical composite panels. And then, the panel
flutter analysis was performed by solving complex eigenvalue problems. Thirty normal modes were used in
flutter analysis. The previous model used in free vibration analysis was also used in the panel flutter analysis.
To calculate the aerodynamic force, Krumhaar’s modified supersonic piston theory is applied.

The aeroelastic results of the original base composite panel neglecting structural damping are compared
with those considering structural damping. Structural damping means the loss factor of graphite/epoxy layer
consisting of the cylindrical composite panel. Panel flutter occurs at a point where the damping coefficients are
lower than zero. As shown in Figs. 5 and 6, the two cases are very different.

When structural damping is neglected, the panel flutter occurs at dynamic pressure b� ¼ 841, when the two
modes merge between fourth and fifth mode. The panel flutter also occurs between the fourth and fifth modes
when structural damping is considered, but the flutter boundary changes remarkably. The flutter boundary
ðb�Þ considering structural damping is reduced by 210, compared with that of the other.

The eigensolution of Eq. (18) has been represented as a complex form ðl ¼ lR þ lI Þ without a structural
damping. The complex eigensolution l have been obtained with real values ðlI ¼ 0Þ before a panel flutter
occurs. Until the flutter point, real parts lR of eigenvalues of two flutter modes have got close to each other as
aerodynamic pressure increases. At the flutter point, the frequency coalescence of two modes has happened
and the eigensolution has been the conjugate complex.

With a structural damping ðKDa0Þ, the eigensolution l have been complex values according to all
aerodynamic pressure. Until the flutter point, real parts lR of two flutter modes also have got close to each
other but do not merged as aerodynamic pressure increases. These eigensolutions with a damping gradually
approach to the ones without a structural damping, which are asymptotic lines. The flutter with a structural
damping occurs when the sign of the imaginary part lI changes to the negative value. The spread point, where
the gap of the imaginary values between conjugate complex eigenvalue gets wide after mode coalescence, has
located prior to the one without a structural damping. And the sign of imaginary parts changes the negative
value before the flutter limit without a structural damping. Then the critical aerodynamic pressure of the
aeroelastic systems considering the structural damping may be located prior to the one without a structural
damping. Hence, it causes a decrease of the flutter boundary.
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Fig. 7. Flutter history of UCLD with ISD 110 viscoelastic layer.
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The results of this analysis are remarkable. It was thought that structural damping significantly affects
aeroelastic characteristics. The loss factor of graphite/epoxy is often neglected in dynamic and aeroelastic
analysis because it is very small (E10�3) compared to other material properties. In free vibration analysis
Table 2

Effect of damping treatments using ISD 110 as viscoelastic material on the flutter of cylindrical panel (I)

Original Panel 

([04/903]s)
UCLD ( [(04/903)s/d])

CLD_[0]2
([(04/903)s/d/02])Modes

Freq (Hz) Freq (Hz) Freq (Hz)η η η

1st

2nd

3rd

4th

5th

Flutter 4th& 5th β* = 611 β* = 4914th & 5th 4thβ* = 410

260.875 0.005520 250.100 0.005736 261.044 0.030975

265.088 0.004184 254.154 0.004544 273.208 0.047776

430.575 0.003975 412.820 0.004384 438.736 0.58606

430.876 0.004064 413.081 0.004311 440.127

460.877 0.004168 441.840 0.004399 0.057794465.605

0.067262
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considering the loss factor of graphite/epoxy, the loss factor of graphite/epoxy may be neglected because the
difference between results with structural damping and results without structural damping is very small. But
aeroelastic results show that structural damping significantly affects aeroelastic analysis although very slightly.
Hence, it is very important to consider structural damping to accurately estimate the flutter boundary to
achieve conservative aeroelastic design.

3.4. Flutter boundary of hybrid panels with damping treatments

Four cases are considered as damping treatments. The flutter characteristics of original base composite
panel are compared with those of CLD (constrained layers damping treatment), UCLD (unconstrained layers
damping treatment) and composite panel with embedded damping layer.

Firstly, in the case where ISD 110 is used as viscoelastic materials, as shown in Fig. 7 and Table 2, the flutter
of UCLD model exists between the fourth and fifth modes. And the critical aerodynamic pressure b� decreases
by 201, compared with that of original base composite panel. As mentioned in the free vibration analysis, the
density of a viscoelastic material is about twice that of a graphite/epoxy material, but the modulus of a
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Fig. 9. Flutter history of CLD_[90]2 with ISD 110 viscoelastic layer.

Fig. 8. Flutter history of CLD_[0]2 with ISD 110 viscoelastic layer.
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Table 3

Effect of damping treatments using ISD 110 as viscoelastic material on the flutter of cylindrical panel (II)

CLD_[90]2

([(04/903)s/d/902])

Sandwich model  

([04/903/d/04/903])
Modes

Freq (Hz) η

Modes

Freq (Hz) η

11th

829.429 0.124250

902.395 0.077656

938.248 0.078394

1027.917 0.044842

953.633 0.149155 910.799 0.454918

910.736 0.434698

874.894 0.078057

849.824 0.0066873

829.734 0.304032

19th

12th 20th

13th 21st

14th 22nd

15th 23rd

Flutter 13th 21stβ* = 886 Flutter β*= 656 
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viscoelastic layer is much smaller than that of a graphite/epoxy layer. So, the natural frequencies of UCLD are
less than those of the original base panel, and this affects the flutter boundary. Finally, the low frequency
reduces the aeroelastic stability in view of non-dimensional aerodynamic pressures.
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Figs. 8 and 9 and Tables 2 and 3 indicate the flutter boundaries in the cases of CLD_[0]2 and CLD_[90]2.
When CLD_[0]2 is used, flutter also occurs at the fourth mode. The constrained layers, [0]2 plies, improve the
longitudinal stiffness and increase the natural frequencies, but the panel flutter of the original model depends
on the circumferential (j-directional) mode mainly. So, [0]2 layers provides the better aeroelastic stability than
UCLD, but it does not improve the flutter boundary. The flutter boundary of CLD_[0]2 decreases by 120, in
compared with the flutter limit of original base composite panel. In free vibration analysis, CLD_[0]2 shows
the higher natural frequencies and the better loss factors than those of base panel. But CLD_[0]2 has the lower
flutter boundary than the original panel.

In the case of CLD_[90]2, the aeroelastic unstable phenomenon is observed in higher mode than those in the
cases of UCLD and CLD_[0]2. The panel flutter occurs at the 13th mode. [90]2 layers improve the
circumferential stiffness, and it causes the improvement of the aeroelastic stability. The flutter boundary of
CLD_[90]2 increases by 275, compared with that of original base composite panel. CLD_[90]2 shows improved
results in free vibration as well as aeroelastic analysis.

As shown in Fig. 10 and Table 3, in the case of the model with an embedded damping layer, the panel flutter
is observed in the higher mode than the instance of CLD_[90]2 (comparison is not clear). It occurs at the 21st
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Fig. 11. Flutter history of UCLD with ISD 112 viscoelastic layer.
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Fig. 10. Flutter history of panel with embedded ISD 110 viscoelastic layer,
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mode and the flutter boundary ðb�Þ increases by 45, compared with that of original base composite panel. The
composite panel with embedded damping layer has the better aeroelastic stability and the better loss factor,
but lower natural frequencies than the original base panel.

Secondly, in the case of using ISD 112 as viscoelastic materials, as shown in Fig. 11, the flutter of UCLD
model has been observed between fourth and fifth modes. And the dynamic pressure b� decreases by 201,
compared with that of original base composite panel, resulting in the same value to the case using ISD 110.
This result means that the viscoelastic layer does not affect to the aeroelastic stability for free boundary layer
models.

Figs. 12 and 13 and Table 4 indicate the flutter boundaries for the cases of CLD_[0]2 and CLD_[90]2. In
instance of CLD_[0]2, the flutter also occurs between fourth and fifth modes. Similarly to the case using ISD
112, [0]2 plies give better aeroelastic stability than UCLD, but it does not improve the flutter boundary in the
view of non-dimensional flutter limit. The flutter boundary of CLD_[0]2 decreases by 209, when compared
with that of the original base composite panel. It has the lower flutter boundary than CLD_[0]2 and UCLD
using ISD 110.
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Fig. 13. Flutter history of CLD_[90]2 with ISD 112 viscoelastic layer.
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Fig. 12. Flutter history of CLD_[0]2 with ISD 112 viscoelastic layer.



ARTICLE IN PRESS

Table 4

Effect of damping treatments using ISD 112 as viscoelastic material on the flutter of cylindrical panel

CLD_[0]2 CLD_[90]2 Sandwich model
Modes

Freq (Hz) Freq (Hz)Freq (Hz)η η η

1st

249.726 0.047696 253.534 0.074186 182.373 0.128329 

2nd

254.544 0.064809 262.047 0.121067 204.735 0.095230 

3rd

406.046 0.058561 411.461 0.063768 280.126 0.116193 

4th

407.724 0.052120 415.049 0.093783 289.060 0.076038 

5th

435.041 0.048502 438.816 0.056723 291.753 0.126043 

Flutter 4th β* = 402 5th β* = 440 4th β*= 227 
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As regards to CLD_[90]2, the aeroelastic unstable phenomenon is observed at the fifth mode as differing
from the instance of CLD_[90]2 using ISD 110. The flutter boundary of CLD_[90]2 decreases by 191,
compared with that of the original base composite panel. CLD_[90]2 shows improved results in free vibration
but poor results in aeroelastic analysis when ISD 112 is selected as the viscoelastic layer.

As shown in Fig. 14 and Table 3, in regard to the model with embedded damping layer, the panel flutter
occurs at the fourth mode unlike the case using ISD 110, and the flutter boundary ðb�Þ decreases by 384,
compared with that of original base composite panel. The co-cured sandwich model has the worst aeroelastic
stability. In free vibration analysis, the selection of viscoelastic material does not significantly affect the
natural frequencies and the loss factor. But, in the panel flutter analysis, it affects the aeroelastic stability
significantly.

These results show that aeroelastic characteristics as well as dynamic characteristics may improve with the
proper damping treatment, but the flutter boundary can change dramatically with the selection of viscoelastic
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Fig. 14. Flutter history of panel with embedded ISD 112 viscoelastic layer.
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material and damping treatments. The optimal design of viscoelastic damping treatment will be a pending
problem in view of the improvement of the aeroelastic performance.

4. Conclusion

In this study, the panel flutter of cylindrical hybrid composite panels with viscoelastic layers was
investigated by using the finite element method based on the layerwise shell theory considering transverse
shear deformations and Kumhaar’s modified piston theory. Various damping treatment models such as
UCLD, CLD and co-cured models were compared with the original base panel with respect to aeroelastic
stability.

Present results show that it is very important to consider the structural damping properties for the accurate
estimation of aeroelastic characteristics of cylindrical hybrid composite panels even if the structural damping
is very small. In the case where the structural damping was neglected, the results differed by 25% compared
with those in case where structural damping was considered. The various damping treatments improved the
dynamic stability in previous study, but some cases with surface damping treatments lowered the aeroelastic
stability. Therefore, it is necessary to optimally design the damping treatment to improve both dynamic and
aeroelastic characteristics of cylindrical hybrid composite panels with viscoelastic layers.
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